If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32x^2-12x-9=0
a = 32; b = -12; c = -9;
Δ = b2-4ac
Δ = -122-4·32·(-9)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-36}{2*32}=\frac{-24}{64} =-3/8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+36}{2*32}=\frac{48}{64} =3/4 $
| 7^3x=692 | | 12x=(-60) | | -1/4x-8=x+7 | | -4=-g/2 | | -2=j-7 | | -5x+x^2-14=0 | | -8=2a | | -j+14=6 | | 10+6x=-2(x-8) | | x+2=49-x(x) | | 80+16x+4=180 | | -7=-p-2 | | x+2=49+x(x) | | 9=5+c | | 2(y-1)2+8=80 | | x+2=(7-x)(7-x) | | 4(6-x)-2(3-x)-5=(5-2x) | | 3(r-1)=4(6) | | (+9x^2+3x+3x+1)(+9x^2+3x+3x+1)=16 | | 4/7x3=12/21= | | 1.4-0.6=0.2(5+3z) | | (3x+1)(3x+1)(3x+1)(3x+1)=16 | | 4-b÷2=10 | | 60=1/4g+12;g=12 | | 2c=-13 | | 5=15+x | | 20-2t=1/2t+28;t=-3.2 | | 11=2/3x-1;x=15 | | 4x-6,x=5 | | 100−3x=-50 | | 6x2-40=110 | | 650=x+0,25x |